Evolutionary Genomics of Staphylococcus aureus Reveals Insights into the Origin and Molecular Basis of Ruminant Host Adaptation
نویسندگان
چکیده
Phenotypic biotyping has traditionally been used to differentiate bacteria occupying distinct ecological niches such as host species. For example, the capacity of Staphylococcus aureus from sheep to coagulate ruminant plasma, reported over 60 years ago, led to the description of small ruminant and bovine S. aureus ecovars. The great majority of small ruminant isolates are represented by a single, widespread clonal complex (CC133) of S. aureus, but its evolutionary origin and the molecular basis for its host tropism remain unknown. Here, we provide evidence that the CC133 clone evolved as the result of a human to ruminant host jump followed by adaptive genome diversification. Comparative whole-genome sequencing revealed molecular evidence for host adaptation including gene decay and diversification of proteins involved in host-pathogen interactions. Importantly, several novel mobile genetic elements encoding virulence proteins with attenuated or enhanced activity in ruminants were widely distributed in CC133 isolates, suggesting a key role in its host-specific interactions. To investigate this further, we examined the activity of a novel staphylococcal pathogenicity island (SaPIov2) found in the great majority of CC133 isolates which encodes a variant of the chromosomally encoded von Willebrand-binding protein (vWbp(Sov2)), previously demonstrated to have coagulase activity for human plasma. Remarkably, we discovered that SaPIov2 confers the ability to coagulate ruminant plasma suggesting an important role in ruminant disease pathogenesis and revealing the origin of a defining phenotype of the classical S. aureus biotyping scheme. Taken together, these data provide broad new insights into the origin and molecular basis of S. aureus ruminant host specificity.
منابع مشابه
Genome-wide analysis of ruminant Staphylococcus aureus reveals diversification of the core genome.
Staphylococcus aureus causes disease in humans and a wide array of animals. Of note, S. aureus mastitis of ruminants, including cows, sheep, and goats, results in major economic losses worldwide. Extensive variation in genome content exists among S. aureus pathogenic clones. However, the genomic variation among S. aureus strains infecting different animal species has not been well examined. To ...
متن کاملThe role of horizontal gene transfer in Staphylococcus aureus host adaptation.
Staphylococcus aureus is an important human pathogen that also causes economically important infections of livestock. In a recent paper, we employed a population genomic approach to investigate the molecular basis of ruminant host adaptation by S. aureus. The data suggest that the common pathogenic clone associated with small ruminants originated in humans but has since adapted to its adopted h...
متن کاملRecombination-mediated remodelling of host–pathogen interactions during Staphylococcus aureus niche adaptation
Large-scale recombination events have led to the emergence of epidemic clones of several major bacterial pathogens. However, the functional impact of the recombination on clonal success is not understood. Here, we identified a novel widespread hybrid clone (ST71) of livestock-associated Staphylococcus aureus that evolved from an ancestor belonging to the major bovine lineage CC97, through multi...
متن کاملژنومیکس انگل ها
Genes carry instructions to make protein that affect body's cells and their physical activity. They also play an important role in the occurrence of various characteristics in the body. Recently, scientists in the new field of science known as genomics have studied the genetic instructions. Genomics deals with the discovery of all the sequences in the entire genome of organisms and is used to s...
متن کاملMolecular genetic typing reveals further insights into the diversity of animal-associated Staphylococcus aureus.
Staphylococcus aureus is an important pathogen of man, but is also able to colonize and cause disease in a wide variety of mammals and birds. An extended multilocus sequencing approach, involving multilocus sequence typing (MLST), sas typing, spa typing and agr typing, was used to examine the molecular diversity of 118 S. aureus isolates recovered from a range of host species and to compare the...
متن کامل